Despite the significant advancements in drone sensory device reliability, data integrity from these devices remains critical in securing successful flight plans. A notable issue is the vulnerability of GNSS to jamming attacks or signal loss from satellites, potentially leading to incomplete drone flight plans. To address this, we introduce SiaN-VO, a Siamese neural network designed for visual odometry prediction in such challenging scenarios. Our preliminary studies have shown promising results, particularly for flights under static conditions (constant speed and altitude); while these findings are encouraging, they do not fully represent the complexities of real-world flight conditions. Therefore, in this paper, we have furthered our research to enhance SiaN-VO, improving data integration from multiple sensors and enabling more accurate displacement predictions in dynamic flight conditions, thereby marking a significant step forward in drone navigation technology.